Если взять атомное ядро и нагреть его выше критической температуры, равной примерно 2 трлн градусам (175 МэВ в энергетических единицах), ядерная материя превратится в особое состояние вещества — кварк-глюонную плазму. В этом состоянии уже нет отдельных протонов и нейтронов, а есть лишь кварки и глюоны, свободно гуляющие по всему объему плазмы. Это очень необычное состояние материи, которое одинаково интересно и теоретикам, и экспериментаторам. В эксперименте облачко кварк-глюонной плазмы можно создать на очень короткое время в лобовом столкновении двух тяжелых ядер с большой энергией. Время от времени коллаборации публикуют результаты этих анализов, которые один за другим вскрывают интересные особенности кварк-глюонной плазмы. Однако при столкновении ядер высокой энергии прелестные кварки рождаются и пытаются объединяться в мезоны не в пустоте, а прямо внутри кварк-глюонной плазмы. И тут оказывается, что плазма влияет на этот процесс самым непосредственным образом — она мешает b-кваркам объединяться в ипсилон-мезоны!
С точки зрения детектора это приводит к нехватке ипсилон-мезонов по сравнению с другими частицами.
Объяснить этот эффект нетрудно. Прелестные кварки, конечно, притягиваются друг к другу, пытаясь объединиться в ипсилон-мезон, но плазма из свободных кварков, в которую всё это погружено, экранирует силы притяжения. В результате экранированные силы оказываются намного слабее, и прелестные кварки уже не могут связаться в устойчивый мезон, как прежде. Поэтому в кварк-глюонной среде у тяжелых мезонов есть намного меньше шансов вылететь из облачка плазмы: даже если мезон и образуется, его энергия связи будет так низка, что он тут же развалится из-за высокой температуры плазмы. Иными словами, мезоны плавятся внутри кварк-глюонной плазмы !!!
Надо подчеркнуть, что тут нет никакой особой специфики элементарных частиц, это совершенно естественное поведение любых свободных зарядов. Например, если в обычную электропроводящую среду поместить электрический заряд, то противоположно заряженные частицы среды притянутся к нему, нейтрализуя заряд. Поэтому сила между двумя электрическими зарядами, погруженными в проводящую среду, окажется заметно слабее, чем в вакууме, а значит, связанное состояние может попросту распасться на отдельные частицы.
Экспериментальное наблюдение этого эффекта является одним из самых надежных доказательств образования кварк-глюонной плазмы и позволяет изучать ее свойства. Интересно провести аналогию между этим исследованием и... астрономией, когда по отношению яркости разных спектральных линий в далеких звездах или туманностях удается вычислить температуру и плотность вещества в них.
|